-
2022-09-23 18:12:25
BYH337
BYH337_SI4902DY-T1-E3 Introduction
MOS tubes like NCE80H12 convert the DC power in the battery into AC power when the electric vehicle is running normally, thereby driving the motor to run.
In simple terms, the motor is driven by the output current of the MOS tube such as NCE80H12. The larger the output current (in order to prevent overcurrent from burning the MOS tube, the controller has limited current protection), the motor torque is strong and the acceleration is powerful, so MOS Tubes play a very important role in electric vehicle controllers.
BYH337_SI4902DY-T1-E3
BYP32036
Barrier capacitance: In power semiconductors, when the N-type and P-type semiconductors are combined, the electrons of the N-type semiconductor will partially diffuse into the holes of the P-type semiconductor due to the concentration difference, so they will form on both sides of the junction surface. Space charge area (the electric field formed by the space charge area will resist the diffusion movement, and finally make the diffusion movement reach equilibrium);
MOS tube 3306 product features 1. RDS(on)=7mΩ@VGS=10V 2. Lead-free green equipment 3. Low resistance switch to reduce conduction loss 4. High avalanche current.
However, in terms of structure, there is a big difference between them. In order to better understand the mechanism of power MOSFET, we must first recall the mechanism of low-power FET. . The following describes the principle of the MOS transistor with the structure of an N-channel enhancement type low-power MOSFET. Working principle of power MOS tube Power MOS tube is developed from low-power MOS tube.
BYS31511 BYH32025A BYS32026A BYP32027A BYF32028A BYF32018A BYD32011Z BYF32090 BYJ32056 BYP32011A
BYH337_SI4902DY-T1-E3
AP9960AGM
The N-channel enhancement mode MOS transistor uses a low-doped P-type semiconductor as the substrate, and forms two heavily doped N+ regions on the substrate by a dispersed method, and then generates a very thin one on the P-type semiconductor. A silicon dioxide insulating layer, and then photolithography is used to etch away the silicon dioxide layer on the upper end of the two heavily doped N+ regions, exposing the N+ regions, and finally on the outer surface of the two N+ regions and the two between them. The surface of silicon oxide is sprayed with a layer of metal film by evaporation or sputtering. These three metal films constitute the three electrodes of the MOS tube, which are called source (S), gate (G) and drain (D) respectively. .
. The characteristics of a MOSFET can be characterized by a transfer characteristic curve and a drain output characteristic curve. Figure 3 shows the handling characteristics of a certain FET. The transfer characteristic refers to the relationship curve between the gate voltage UGS and the corresponding drain current ID when the voltage UDS between the drain and the source is at a certain fixed value.
BYM4610 BYM4640 BYM4875 BYM81080 BYM81095 BYM826 BYM8311 BYM8315 BYH8415 BYM8415.
Another technique is to intermittently improve the structure of the MOSFET and use a straight V-groove structure. In order to avoid the problems of too small current-carrying capacity and large on-resistance of MOSFET, two techniques are generally used in high-power MOSFETs. One is to connect millions of low-power MOSFET unit cells in parallel to improve the current-carrying capacity of MOSFET. . FIG. 3 is a cross-sectional view of the structure of a V-channel MOSFET.
BYH337_SI4902DY-T1-E3
NCE25TD135LT NCE15TD135LT NCE15TD120LP NCE15TD135LP NCE25TD120LP.
In the lithium battery protection board, the most important thing is to protect the chip and MOS tube.
relevant information
